
Mathematical Modelling of a Cytoskeletal System:
Optimisation of a Plasmid Partitioning Mechanism

Using Artificial Evolution

By

Minghua Yin

Supervised by Dr François Nédélec

A Project Report
in Partial Fulfillment of the Requirements for
the Degree of Master of Natural Sciences

at the University of Cambridge

Word Count: 5671

II

DECLARATION OF ORIGINALITY

‘Mathematical Modelling of a Cytoskeletal System: Optimisation of a Plasmid Partitioning

Mechanism Using Artificial Evolution’

I understand the University’s definition of plagiarism. I declare that, in accordance with Disci-

pline regulation 6, this dissertation is entirely my own work except where otherwise stated, either

in the form of citation of published work, or acknowledgement of the source of any unpublished

material.

Minghua Yin, Trinity College

04/05/2022

III

SUMMARY

Recently, computer simulations have been found to be very useful in cell research, with many

different modelling tools now in development that aim to shed light on the mechanisms that allow

cells to perform complex tasks. Cell division in particular is of great interest as an essential process

that sustains life, but the large number of steps and cellular components involved means that it is

difficult to gain a detailed understanding of how it works through experiments alone, highlighting

the need for computational modelling. This project investigates how a particular artificial cell,

modelled using the cytoskeletal simulation tool Cytosim, behaves after its DNA is replicated and

the two copies need to be separated so that the cell can successfully divide. The cell was configured

to have a relatively simple cytoskeleton consisting of microtubules assisted by plus-end directed

motor proteins of a single type. A small number of cell parameters was selected and an optimisation

method known as a genetic algorithm was used to look for values for these parameters that would

maximise the cell’s chances of successful partitioning. The cell’s partitioning mechanism was

found to be generally effective, often with a success rate of at least 0.9 in the fittest cases, although

some possible limitations were identified that could warrant further investigation. The performance

of the genetic algorithm was generally good and highly optimal solutions were often found, but

certain avenues for further research, regarding both the way the algorithm is coded and the way

it is configured, were identified that could help to better explain how the algorithm works and to

improve some of the algorithm’s less successful aspects.

IV

ACKNOWLEDGEMENTS

I’m extremely grateful to Dr François Nédélec for his constant advice, support, patience and

ambition for the whole duration of this project, and to the rest of the Nédélec group for the many

thought-provoking chats and meetings.

I’m indebted to Yi Ting for teaching me about reverse-i-search in Bash, without which this

project would have been excruciating.

Lastly, I’d like to thank Yuriy Tumarkin and Alejandro Epelde for enthusiastically letting me

talk to them about, and show them pictures of, ‘my big green balls’.

V

TABLE OF CONTENTS

DECLARATION OF ORIGINALITY III

SUMMARY IV

ACKNOWLEDGEMENTS V

LIST OF TABLES VII

LIST OF FIGURES VIII

LIST OF ABBREVIATIONS IX

1 Introduction 1
1.1 Computational modelling of cells . 1
1.2 Cell division and the cytoskeleton . 2

2 Results 7
2.1 Infinite energy case . 9
2.2 Additional energy constraints . 10
2.3 Partitioning checkpoint . 16

3 Discussion 19
3.1 Conclusions . 19
3.2 Other further work . 21

4 Methods 22
4.1 Cytosim . 22

4.1.1 Background . 22
4.1.2 Main assumptions and techniques . 23
4.1.3 Modifications . 23

4.2 Genetic algorithm . 25
4.2.1 Background . 25
4.2.2 Implementation . 25

REFERENCES 27

A Code Snippets 31
A.1 Modifications to Cytosim . 31
A.2 Fitness functions . 35
A.3 Heatmaps and fitness plots . 37

B Configuration Files 43

VI

LIST OF TABLES

2.0.1 The specifications for the artificial, rod-shaped cell used for the simulations. A

few modifications were made for some of the simulations — these are explicitly

stated in the relevant sections. 8

2.1.1 The parameters that the GA varied for the simulations in Subsection 2.1. 9

2.1.2 Two of the perfect scorers for the infinite energy simulation, demonstrating dif-

ferent optimal solutions. 10

2.2.1 The fittest individual when the GA was run with a population size of 50 and 40

simulations per individual. 12

2.2.2 The perfect scorer when the GA was run with a population size of 200 and 10

simulations per individual. 14

2.3.1 One of the fittest individuals from each of two runs of the GA. Ind 5 is from a run

with the first evolutionary configuration, and Ind 6 is from a run with the second

evolutionary configuration. 18

4.1.1 The three energy-costing actions that are accounted for in the simulations in Sub-

section 2.2 onwards. As with all properties defined in Cytosim, the values of the

new properties are specified in the .cym configuration file, which makes the sim-

ulations highly customisable. 24

VII

LIST OF FIGURES

1.2.1 The cell cycle for a typical eukaryotic cell (Alberts, 2015, Chapter 17). 2

1.2.2 The structure of a typical MT (Alberts, 2015, Chapter 16). 3

1.2.3 The mitotic spindle of a typical animal cell during metaphase, just before the sister

chromatids are pulled apart (Alberts, 2015, Chapter 17). 4

1.2.4 The walking mechanism by which kinesin moves along an MT (Korosec and

Forde, 2017). 5

2.2.1 Frames of a successful simulation for Ind 3 from Table 2.2.1. The two plasmids

are represented by the green balls, which are purely visual as the plasmids are

actually modelled as single-point beads. The red dots are complexes, some of

which are free-floating in the cytoplasm and some of which are bound to one or

two MTs. 12

2.2.2 Heatmap and fitness plots for runs of the GA with a population size of 50 and 40

simulations per individual. The red line is the maximum fitness plot and the white

line is the average (mean) fitness plot. 13

2.2.3 Heatmaps and fitness plots for runs of the GA with the cell configured to have a

very high viscosity of 100 Pa s. In each Subfigure, the red line is the maximum

fitness plot and the white line is the average (mean) fitness plot. 15

2.3.1 Heatmaps and fitness plots for runs of the GAwith a partitioning checkpoint added

to the cell. In each Subfigure, the red line is themaximum fitness plot and thewhite

line is the average (mean) fitness plot. 17

2.3.2 Frames of a successful simulation for Ind 5 from Table 2.3.1. Interestingly, no

complexes attached to bothMTs! The singleMT attached to each plasmid seemed

to be enough to push the plasmids towards the ends of the cell, fortunately to

opposite ends. 18

4.2.1 The steps of the GA used in this project. The first stopping condition in Step 3

was in fact disabled in all the simulations by setting the threshold to 0. 26

VIII

LIST OF ABBREVIATIONS

GA Genetic Algorithm

MAP Microtubule-Associated Protein

MT Microtubule

MTOC Microtubule-Organising Centre

IX

1 Introduction

1.1 Computational modelling of cells

Cells are incredibly complex building blocks of life and there remains much to be discovered about

their inner workings. In recent decades, computer simulations have been increasingly employed to

help better understand the details of cellular processes. For example, successful cell division re-

quires numerous structural proteins, regulatory proteins and enzymes to correctly interact in several

steps and checkpoints, and it is difficult to investigate specific mechanisms at high resolution by

purely empirical means. Previous work that has benefitted from the use of simulations has included

looking at the effect of chromosomal movements and rotations on the acceleration of mitotic spin-

dle assembly (Paul et al., 2009), and showing that dynamic instability, a property of microtubules

(see Subsection 1.2), greatly improves the efficiency of locating chromosomes (Holy and Leibler,

1994).

Ultimately, a central aim in computational biology is to continually develop better and more

accurate models of cellular processes. Not only is this useful for understanding life, but it can also

shed light on unnatural but successful new mechanisms not found in any known organisms. The

potential implications this has in synthetic biology are difficult to predict, but they certainly exist.

This project focuses on cell division, particularly the mechanisms by which genetic material is

transported in cells. The main aims of the project were as follows:

• to show that Cytosim, a cytoskeletal simulation tool (see Subsection 4.1 for more details),

which uses a number of simplifying assumptions, can reproduce successful mitotic processes

with different starting configurations and parameters;

• to improve the simulation tool by coding in simple energy considerations and checkpoints;

• to use a genetic algorithm (see Subsection 4.2 for more details) to optimise sets of parameters

for various simulation configurations.

1

1.2. CELL DIVISION AND THE CYTOSKELETON SECTION 1. INTRODUCTION

Fig. 1.2.1: The cell cycle for a typical eukaryotic cell (Alberts, 2015, Chapter 17).

1.2 Cell division and the cytoskeleton

Cell division is an essential mechanism by which all organisms reproduce, and thus is key to sus-

taining life. Although the precise steps vary between different species, all dividing cells must

replicate their DNA and then accurately separate the two copies in space before splitting in two.

In the eukaryotic cell cycle, this process of DNA partitioning takes place in M phase (see Figure

1.2.1), consisting of mitosis, during which the DNA is partitioned and nuclear division occurs, and

cytokinesis, during which the cytoplasm is divided in two and the daughter cells are formed (Mor-

gan, 2007). Similar steps occur in prokaryotic cells such as bacteria. The cell cycle is complex

and involves precise activatory and inhibitory processes at various checkpoints by enzymes and

regulatory proteins.

Themovement of chromosomes and other genetic material in a cell is controlled by the cell’s cy-

toskeleton, in particular by filaments such as microtubules (MTs) in eukaryotes (Aldaz et al., 2005)

and ParM, an actin homologue, in bacteria (Salje and Löwe, 2008). MTs are hollow tubes consist-

ing of 13 parallel protofilaments, each of which is made up of 8 nm-long subunits of αβ-tubulin

(see Figure 1.2.2) (Kerssemakers et al., 2006). The numerous longitudinal and lateral contacts

between these tubulin heterodimers make MTs very stiff, and previous experiments have shown

that an MT has similar mechanical properties to an elastic rod (Dogterom and Yurke, 1997). MTs

are polar, with the plus-end polymerising much faster than the minus-end. Polymerisation of MTs

is greatly assisted by nucleators, typically γ-tubulin ring complexes, which act as a blueprint to

2

1.2. CELL DIVISION AND THE CYTOSKELETON SECTION 1. INTRODUCTION

Fig. 1.2.2: The structure of a typical MT (Alberts, 2015, Chapter 16).

which the tubulin heterodimers can attach. MTs are often nucleated from specific locations called

microtubule-organising centres (MTOCs), resulting in striking, radiating formations called asters

(De Simone et al., 2016). Animal cells usually have a single MTOC called the centrosome, which

duplicates before mitosis into two parts that move to opposite sides of the nucleus, forming the

poles of the mitotic spindle, the structure that separates sister chromatids during mitosis (see Fig-

ure 1.2.3). Other eukaryotic cells also have mitotic spindles, although their structures may be

somewhat different — for example, the cells of higher plants do not have centrosomes (Stoppin

et al., 1994). It is not too difficult to model MTs at the scale of monomers, and models with this

resolution are capable of producing reasonably accurate and illuminating results.

3

1.2. CELL DIVISION AND THE CYTOSKELETON SECTION 1. INTRODUCTION

Fig. 1.2.3: The mitotic spindle of a typical animal cell during metaphase, just before the sister
chromatids are pulled apart (Alberts, 2015, Chapter 17).

MTs and other filaments exhibit dynamic instability, where they can rapidly switch between

shrinkage and growth (Hotani and Horio, 1988). The β-tubulin within each subunit is associated

with a GTPmolecule which is hydrolysed to GDP soon after the subunit attaches to theMT. (In actin

and related filaments, ATP is found instead of GTP (Pernier et al., 2016).) Hydrolysis of the GTP

reduces the binding affinity of the subunit for neighbouring ones and hence makes it more likely to

dissociate from the polymer. AnMTwill therefore consist mostly of GDP-tubulin monomers, but at

each end it is possible for there to be a GTP cap if the rate of addition of subunits at that end is greater

than the rate of GTP hydrolysis. A GTP cap favours growth, while an end containing GDP-tubulin

favours depolymerisation (by a factor of about 100 compared to GTP-tubulin). MTs are commonly

observed to alternate between a state of slow growth and one of rapid depolymerisation. These

changes of state are random, with a probability that depends on the concentration of free GTP-

tubulin subunits. A transition from growth to shrinkage is called a catastrophe and a transition

from shrinkage to growth is called a rescue.

Eukaryotic cells containmany different types ofmicrotubule-associated proteins (MAPs), which

attach to MTs and alter their behaviour, such as by initiating rescue or catastrophe, or by helping

to transport the MTs through the cytoplasm (Galjart, 2010). In particular, kinesins and dyneins are

motor proteins that bind to and move along MTs. Most (but not all) kinesins move towards the

plus-end of an MT while dyneins are minus-end directed (Kikkawa, 2013). Some kinesins can

4

1.2. CELL DIVISION AND THE CYTOSKELETON SECTION 1. INTRODUCTION

Fig. 1.2.4: The walking mechanism by which kinesin moves along an MT (Korosec and Forde,
2017).

bind to multiple MTs, while others have sites to which intracellular cargo such as chromosomes

can bind (Verhey et al., 1998). Kinesins typically have two heavy chains, each of which has a

tubulin-binding domain (a ‘foot’) and a site that binds ATP (Howard et al., 1989). The two feet

of a kinesin molecule attach to adjacent heterodimers on an MT. Kinesin moves via a ‘walk’ (see

Figure 1.2.4): hydrolysis of one ATP molecule causes the back foot to detach from the MT, swing

forwards and reattach in front of the other foot (Vale and Milligan, 2000). Hence the length of each

step that kinesin makes is 8 nm. Motor proteins attach to MTs at a rate that depends on their con-

centration, while their detachment is affected by the force experienced by the molecular link in the

motor protein, e.g. due to tension from cargo. The relationship between the detachment rate koff and

the magnitude f of the experienced force is exponential and obeys Bell’s law, koff = k0 exp(f/f0),

where k0 is the load-free rate and f0 is a characteristic force that depends on temperature and a

molecular scale (Walcott, 2008). Intracellular events such as motor protein detachment that can be

described using well-defined equations can be readily modelled.

Motor proteins are essential for the action of the mitotic spindle. Dynein and different types

of kinesin help to organise the spindle and transport cargo along MTs (Verhey et al., 2011). For

example, in animal cells, kinesin-5 binds to two antiparallel MTs originating from opposite poles

5

1.2. CELL DIVISION AND THE CYTOSKELETON SECTION 1. INTRODUCTION

and pushes the MTs part, since each pair of feet moves towards the plus-end of its respective MT.

Kinesin-4 and kinesin-10 push attached chromosomes towards the plus-ends of MTs. Kinesin-14

is minus-end directed and tends to pull the poles together, and dynein links MTs with the actin

cytoskeleton at the cell cortex, providing anchorage to the poles (Walczak et al., 2010). Despite

each motor protein having a simple action, together they allow the spindle to perform important

and complex tasks such as organising chromosomes and separating sister chromatids. Many other

MAPs also play important roles — for example, proteins such as CLASP and CLIP-170 bind to

MTs and promote rescue (Fees and Moore, 2019). The simplicity of each motor protein’s action

also means that it is relatively straightforward to make computational models of the cytoskeleton

that can reproduce the complex behaviour observed in real cells. It is worth noting that, although

the focus in this section has been on animal cells, the cytoskeletons of other eukaryotic cells and

prokaryotic cells will have many similarities to the above, and the basic concepts described here

are applicable to cells from a wide variety of species.

6

2 Results

A significant amount of time in this project was spent working on modifications to the Cytosim

code that were required for the simulations (see Subsection 4.1.3) and completing the code for

the genetic algorithm (GA) (see Subsection 4.2.2). The utility of the GA was then tested with a

large number of simulations. Examples of the configuration files used in the project, for both the

simulations and the GA, can be found in Appendix B.

The simulations are of an artificial, rod-shaped cell, similar in size to a typical bacterial cell.

Inspiration was loosely taken from such single-celled organisms as the yeast Schizosaccharomyces

pombe and the bacterium Escherichia coli, forming a sort of ‘hybrid’ cell, with its (already repli-

cated) DNA found in two plasmids (modelled as single-point beads), but with MT fibers as in

eukaryotes. The cell has two types of protein: complexes, which are couples consisting of plus-

end directed kinesins (similar to kinesin-5), and nucleators, which are singles. Instead of the

cell having a specialised centrosome, the nucleators are directly attached to the plasmids so that

MTs are nucleated with their minus-ends bound to the plasmids. Complexes are synthesised free-

floating in the cytoplasm and can bind to a pair of antiparallel MTs, one from each plasmid. Since

the kinesins are all plus-end directed, a doubly attached complex will push the MTs away from

each other and hence move the plasmids further apart — this is the primary mechanism by which

the artificial cell aims to separate its DNA. The MTs exhibit dynamic instability with a hydrolysis

rate of 1 s−1, which corresponds to a catastrophe rate of approximately 0.12 s−1 (see Subsection

4.1.2).

Table 2.0.1 gives the exact specifications of the cell and its components. Most of the values

were taken from empirical data from past research (Campbell and Mullins, 2007; Footer et al.,

2007; Garner et al., 2004; Gittes et al., 1993).

This hybrid cell was designed to strike a good balance between simplicity, given the time con-

straints of the project and the limitations of Cytosim itself, and complexity, so that the cell’s mech-

anisms would not be too distant from reality and a significant step could be made towards the

long-term aim of modelling and optimising more complex cells (see Subsection 3.2). A rod shape

was chosen (rather than, say, a sphere) as it provided a clear, simple way of determining whether

7

SECTION 2. RESULTS

Property Value Property Value

Cell Nucleator

Radius 0.4 µm Stiffness 1000 pN µm−1

Length 2 µm Nucleation rate 1 s−1

Viscosity 0.1 Pa s Init length of created MT 0.01 µm

Plasmids Kinesin

Confinement stiffness within cell 100 pN µm−1 Binding rate 10 s−1

MTs Unbinding rate 0.3 s−1

Rigidity 20 pN µm2 Unbinding force 2.5 pN

Confinement stiffness within cell 100 pN µm−1 Unloaded speed 0.02 µm s−1

Unit length 0.008 µm Stall force 6 pN

Shrinking speed 0.5 µm s−1 Kinesin complex

Hydrolysis rate 1 s−1 Stiffness 100 pN µm−1

Growing force 1.7 pN Diffusion coefficient 0.05 µm2 s−1

Total # monomer units available 200 Natural length 0.025 µm

Table 2.0.1: The specifications for the artificial, rod-shaped cell used for the simulations. A few
modifications were made for some of the simulations — these are explicitly stated in the relevant
sections.

8

2.1. INFINITE ENERGY CASE SECTION 2. RESULTS

Property Range

Growing speed of MTs (µm s−1) [0.05, 0.5]

Binding range for kinesin (µm) [0.01, 0.05]

Number of nucleators per plasmid [1, 12]

Number of complexes [50, 5000]

Table 2.1.1: The parameters that the GA varied for the simulations in Subsection 2.1.

a partitioning was successful: the long axis of the cell was positioned to coincide with the x-axis,

with the cell centred at the origin, so that the plane x = 0 divided the cell evenly. The partitioning

could then be considered successful if at the end of the simulation the plasmids were on opposite

sides of this plane.

The two DNA beads are initially placed along the x-axis, at x = −0.3 and x = −0.5 respec-

tively (units are µm). The simulations were configured with a time step of 0.001 s and a runtime

of 100 s, which is the order of magnitude within which the cell should be able to partition its DNA.

The GA was configured with a population size per generation of 50, and was set to terminate

(see Step 3 in Figure 4.2.1) either (a) if the maximum fitness in the most recent generation is greater

than 0.9 or (b) after 50 generations.

2.1 Infinite energy case

Initially, four properties were decided on for the GA to optimise. These, along with their specified

ranges, are listed in Table 2.1.1. The rangeswere chosen to be realistic and consistent with empirical

data for naturally occurring cells of a similar size (Verhey et al., 1998; Howard et al., 1989; Holy

and Leibler, 1994; Matsuyama et al., 2006).

For these simulations, no modifications were made to the base Cytosim code. The GA was first

run with a population size of 50 and with 40 simulations for each set of parameters (aka individual).

The fitness function was defined as follows: for each of the 40 simulations, the final x-coordinates

of the plasmids are examined. If they have opposite signs, then the partitioning was a success and

this particular simulation gets a score of 1. Otherwise, the simulation gets a score of 0. A mean

9

2.2. ADDITIONAL ENERGY CONSTRAINTS SECTION 2. RESULTS

Property Ind 1 Ind 2

Growing speed of MTs (µm s−1) 0.2653 0.1824

Binding range for kinesin (µm) 0.0473 0.0447

Number of nucleators per plasmid 9 11

Number of complexes 2360 4379

Table 2.1.2: Two of the perfect scorers for the infinite energy simulation, demonstrating different
optimal solutions.

score over all 40 simulations is then calculated, which corresponds to the fitness of the individual.

The GA terminated at just generation 0 and found four individuals with a perfect fitness score

of 1, two of which are shown in Table 2.1.2. Further runs of the GA yielded yet more optimal

solutions, indicating that the ranges from Table 2.1.1 are capable of producing positive results.

Additions to the Cytosim code, and eventually the cell configuration, were then made to model the

cell more realistically, as detailed in the next Subsections.

2.2 Additional energy constraints

The Cytosim code was modified to model simple energy constraints. As described in Subsection

4.1.3), the cell was given an energy income and the energy costs of three key actions were specified.

• The synthesis of a complex was set to cost 400 ATP.

• The movement of a kinesin by one step was set to cost 1 ATP. Since each step is 8 nm long,

the movement cost per µm is 125 ATP.

• The polymerisation of an MT was set to cost 13 GTP (ATP equivalent) per monomer length

(8 nm). The simulation was set up so that all 200 monomer units are available to the cell

right from the start, but this cost accounts for the replenishment of one GTP molecule per

attached heterodimer (to replace the GTP that is hydrolysed), with each MT consisting of 13

protofilaments. The movement cost per µm is thus 1625 ATP equivalent.

10

2.2. ADDITIONAL ENERGY CONSTRAINTS SECTION 2. RESULTS

A very rough, order-of-magnitude estimate of an appropriate income was calculated by taking

one of the optimal solutions from Subsection 2.1 (Ind 1 from Table 2.1.2) and estimating the energy

used by the cell during the simulation. With vgrow = 0.2653, nnuc = 9 and ncom = 2360, and the

assumption that each kinesin travels a total of 1 µm, the energy use per second E was estimated

to be about 260000 units of ATP1.

The configuration was slightly changed so that the complexes would now be added to the cell

one by one, at a rate in the range [10, 100] s−1, to roughly match the range for the number of

complexes in Subsection 2.1. This parameter replaced the previously used number of complexes.

The GA was run with these modifications, but it was found that the income was too low for the

number of successful partitionings to be significant. It is important to emphasise that the estimate

obtained above is extremely loose and so it is justified to change the leading digit or increase the

energy intake by a reasonable amount. Once the income was increased to at least 800000 ATP

per second, the results became much more noteworthy. The results below are all from simulations

where the income was 800000 ATP per second.

Again with a population size of 50 and 40 simulations per individual, the GA terminated at

generation 16 with a maximum fitness of approximately 0.9252. Table 2.2.1 shows the individual

with this fitness. The frames in Figure 2.2.1 show a graphical rendering of one successful simulation

of Ind 3. The heatmap in Figure 2.2.2 shows the distribution of fitnesses for each generation, and

the plotted lines show the maximum fitnesses and average fitnesses across all generations. The

increase in both maximum and average fitness is noticeable, demonstrating correct function of

the GA in producing generally fitter individuals from one generation to the next. Sometimes the

maximum fitness decreased slightly from one generation to the next, due to no individuals being

copied into the next generation via elitism (see Figure 4.2.1).

The GA was then rerun, but this time with a population size of 200 and 10 simulations per

individual, so that the total number of calculations made by the GA stayed the same as before.

This time, an individual (shown in Table 2.2.2) with a perfect fitness of 1 was found in generation

0. Further runs of the GA, with both evolutionary configurations, yielded similar results, with the

second configuration consistently producing generations with higher maximum fitnesses earlier on,
1The full equation used was E = 2nnuc · 400(vgrow + 0.01)/0.008 + ncom(400 + 2/0.008)/100.
2There was a small bug in the Cytosim code which meant that the number of simulations was occasionally slightly

less than 40.

11

2.2. ADDITIONAL ENERGY CONSTRAINTS SECTION 2. RESULTS

Property Ind 3

Growing speed of MTs (µm s−1) 0.4665

Binding range for kinesin (µm) 0.0500

Number of nucleators per plasmid 12

Complex synthesis rate (s−1) 12.8571

Table 2.2.1: The fittest individual when the GA was run with a population size of 50 and 40
simulations per individual.

(a) 0 s. (b) 25 s.

(c) 50 s. (d) 100 s.

Fig. 2.2.1: Frames of a successful simulation for Ind 3 from Table 2.2.1. The two plasmids are
represented by the green balls, which are purely visual as the plasmids are actually modelled as
single-point beads. The red dots are complexes, some of which are free-floating in the cytoplasm
and some of which are bound to one or two MTs.

12

2.2. ADDITIONAL ENERGY CONSTRAINTS SECTION 2. RESULTS

Fig. 2.2.2: Heatmap and fitness plots for runs of the GA with a population size of 50 and 40
simulations per individual. The red line is the maximum fitness plot and the white line is the
average (mean) fitness plot.

13

2.2. ADDITIONAL ENERGY CONSTRAINTS SECTION 2. RESULTS

Property Ind 4

Growing speed of MTs (µm s−1) 0.4400

Binding range for kinesin (µm) 0.0367

Number of nucleators per plasmid 11

Complex synthesis rate (s−1) 94.2857

Table 2.2.2: The perfect scorer when the GA was run with a population size of 200 and 10 simu-
lations per individual.

often in generation 0, compared with the first configuration.

To further test both the GA and the suitability of the artificial cell’s partitioning mechanism,

the viscosity of the cell was increased from 0.1 Pa s to a very high 100 Pa s, rendering the plasmids

virtually immobile unless pushed by the cell’s MT-complex system (the ‘spindle’). Figure 2.2.3

shows the heatmaps and plots for typical GA runs with the first and second evolutionary configu-

rations respectively. With the first configuration, the GA typically terminated at generation 49 (the

maximum possible generation before the GA is programmed to stop) with a maximum fitness that

rarely exceeded 0.625. While the average fitness increased as generation number, the change (if

any) in maximum fitness was much less, with perhaps only a slight increase compared to the very

first generations. Amore successful GAwould be expected to produce amuch clearer improvement

in the maximum fitness over generations. The difference in success between the first and second

configurations is very stark, with the second configuration often producing individuals with very

high fitnesses after a small number of generations and a more significant increase in maximum

fitness over generations. Even given this unrealistic and extreme viscosity, the maximum fitnesses

achieved by the GA indicate that the cell’s spindle significantly improves the cell’s chances of suc-

cessful partitioning, since without it it would be expected that the fitness of any individual would

be close to 0 for these simulations.

14

2.2. ADDITIONAL ENERGY CONSTRAINTS SECTION 2. RESULTS

(a) Population size of 50, 40 simulations per individual.

(b) Population size of 200, 10 simulations per individual.

Fig. 2.2.3: Heatmaps and fitness plots for runs of the GA with the cell configured to have a very
high viscosity of 100 Pa s. In each Subfigure, the red line is the maximum fitness plot and the white
line is the average (mean) fitness plot.

15

2.3. PARTITIONING CHECKPOINT SECTION 2. RESULTS

2.3 Partitioning checkpoint

On inspection of the final x-coordinates of the plasmids for many different simulations, it was

discovered that sometimes the plasmids were still very close to the origin, and to each other, at

the end (|x| < 0.1, say). Real cells typically separate their DNA further from each other so that

the daughter cells are better defined and successful cytokinesis can occur. The next addition to the

Cytosim code was a checkpoint at each time point that checks if (a) the plasmids are on opposite

sides of the cell and (b) |x| > 0.5 for each plasmid— if so, the cell is considered to have successfully

partitioned its DNA. If this still has not happened after 100 s, the cell is deemed to have failed. This

was inspired by real checkpoints that are found at key moments in the cell cycle in most species,

with the cell cycle unable to pass a checkpoint until the conditions there are met (Hartwell et al.,

1974).

The fitness function for the GA was also modified: now, if partitioning is unsuccessful, the

simulation gets a score of 0. If partitioning is successful, the time t taken to partition determines

the score s (0 < s < 1) via a linear scale, with a smaller t corresponding to a higher score.

Explicitly, s = 1− t/100.

The GA was run multiple times with both evolutionary configurations from before. Figure

2.3.1 shows typical results for the two configurations respectively. Regardless of the evolutionary

configuration, most of these runs did not produce a significant improvement in maximum fitness

over generations, and any improvements in average fitness appeared to be small. Closer inspection

of some of the fittest individuals (see Table 2.3.1) showed a very mixed picture and significant in-

consistencies: for example, simulations of Ind 5 were sometimes very short, with some successful

partitionings occurring in less than 10 s (see Figure 2.3.2), but often the DNA did not successfully

separate at all. One interesting feature that was discovered when viewing some of the graphical out-

puts was that in some successful simulations, especially when the number of nucleators was low,

no complexes ever attached to two MTs and hence there was no pushing action on the MTs from

the motor proteins. Despite this, successful partitioning was still sometimes achieved, apparently

because the growing MTs were able to push the plasmids towards the ends of the cell.

Similarly to what was found in Subsection 2.2, the second evolutionary configuration again per-

formed much better than the first in finding individuals with notably higher fitnesses more quickly.

16

2.3. PARTITIONING CHECKPOINT SECTION 2. RESULTS

(a) Population size of 50, 40 simulations per individual.

(b) Population size of 200, 10 simulations per individual.

Fig. 2.3.1: Heatmaps and fitness plots for runs of the GA with a partitioning checkpoint added to
the cell. In each Subfigure, the red line is the maximum fitness plot and the white line is the average
(mean) fitness plot.

17

2.3. PARTITIONING CHECKPOINT SECTION 2. RESULTS

Property Ind 5 Ind 6

Growing speed of MTs (µm s−1) 0.4612 0.4682

Binding range for kinesin (µm) 0.0340 0.0180

Number of nucleators per plasmid 1 1

Complex synthesis rate (s−1) 20.0000 62.8571

Fitness 0.024100 0.097320

Table 2.3.1: One of the fittest individuals from each of two runs of the GA. Ind 5 is from a run
with the first evolutionary configuration, and Ind 6 is from a run with the second evolutionary
configuration.

(a) 0 s. (b) 1.68 s.

(c) 3.04 s. (d) 3.61 s — checkpoint passed.

Fig. 2.3.2: Frames of a successful simulation for Ind 5 from Table 2.3.1. Interestingly, no
complexes attached to both MTs! The single MT attached to each plasmid seemed to be enough
to push the plasmids towards the ends of the cell, fortunately to opposite ends.

18

3 Discussion

A large number of simulations, all of the same basic cell but with somewhat different configura-

tions, was successfully run and produced results of varying quality. Given that the use of relatively

specialised cellular simulation tools such as Cytosim is currently burgeoning, and that up until now

GAs have rarely been used for such problems as DNA partitioning, the results from this project are

very promising and naturally inspire further avenues of investigation.

3.1 Conclusions

Even with relatively simple individual mechanisms, the components of a cell

exhibit self-organisation that allows the cell to perform important tasks

In the artificial cell, each component has a small number of simple actions: for example, a kinesin

can bind to an MT, unbind from anMT or walk along anMT; and anMT can grow or shrink. Given

the right parameters, these components work together and communicate indirectly with each other

to produce well-organised systems. In most of the simulations, it was observed that eventually the

MTs attached to each plasmid tended to be longer on the side facing the other plasmid, and tended

to align themselves with the long axis (x-axis) of the cell. The shape of the resulting structure con-

sisting of connected plasmids, MTs and complexes is very reminiscent of the structures observed

in real cells. The simulations confirm that no sophisticated communication or interaction between

a cell’s components is required for complex larger-scale behaviour to occur.

Computational models are a very useful and efficient way to investigate cel-

lular dynamics

It was demonstrated that computer simulations can produce artificial cells with a strong likeness to

natural ones. Making adjustments to a simulation is much easier, faster and cheaper than trying to

engineer a real cell, and parallel simulations can be fast-forwarded and runmuchmore speedily than

physical experiments. While wet laboratory work is undeniably essential in biological research,

19

3.1. CONCLUSIONS SECTION 3. DISCUSSION

computational models can be of great assistance in improving our understanding of various cellular

mechanisms.

The artificial cell considered in this project is reasonably successful at parti-

tioning its DNA

In many of the runs in Subsections 2.1 and 2.2, parameters that resulted in (almost) perfect parti-

tioning behaviour were found very early on, even when energy constraints were introduced. For

the normal viscosity runs in Subsection 2.2 with the first evolutionary configuration, the typical

maximum fitness found was somewhat lower but still above 0.8, which is comparable to (perhaps

slightly worse than) success rates typically found in nature. The effectiveness of the cell’s spin-

dle was very clearly demonstrated by the results from the high viscosity runs, where despite the

unrealistic conditions a maximum fitness of over 0.5 was still attained.

After the partitioning checkpoint was added for the simulations in Subsection 2.3, the perfor-

mance of the cell was not as consistent. There are a few possible reasons for this. Firstly, it is

possible that the cell’s mechanism has certain limitations that prevent it being able to consistently

push its plasmids far enough apart to pass the checkpoint— indeed, examination of frames of some

of these simulations showed that regular unbinding of complexes and MT catastrophes did often

stall the separation of the plasmids, decreasing the effectiveness of the cell’s mechanism. Sec-

ondly, the checkpoint may have been too strict, and a greater success rate might be observed if the

|x| > 0.5 threshold were relaxed a little. Thirdly, the fitness function could certainly be improved,

as the linear scale used meant that a high score could only be obtained if the cell managed to par-

tition its DNA within tens of seconds, which is not very realistic. A function with a flatter peak

such as s = 1 − (t/100)3 or similar could probably produce better scaled fitnesses. All of these

possibilities could be investigated by making further tweaks to the configurations of the cell and

the GA.

The effectiveness of a GA is significantly affected by the way it is configured

The stark difference in performance between the two evolutionary configurations in Subsections

2.2 and 2.3 shows that it is important to strike a good balance between population size and number

20

3.2. OTHER FURTHER WORK SECTION 3. DISCUSSION

of replicates (or other parameters that affect the total runtime of the GA). Despite the second con-

figuration having a smaller number of simulations per individual, the much larger population size

cast out a much wider net and drastically increased the ability of the GA to find more optimal solu-

tions. However, if the number of simulations is too low, then the errors in the calculated fitnesses

are high, potentially leading to inaccurate results. It would certainly be interesting to experiment

with different evolutionary configurations to see if an even more optimal one can be found for these

simulations.

Other parameters in the evolutionary configuration, or certain details of the GA, could also be

tweaked, which might lead to further improvements in the GA. For example, it would be interesting

to see what would happen if the elitism proportion were increased and the mutation proportion

decreased (see Figure 4.2.1 for further explanation), or vice versa. Some GAs perform crossover

at multiple sites rather than just one (Mitchell, 1998, Chapter 1) — it could be worth investigating

what effect this change would have.

Perhaps one suboptimal feature of the GA used in this project is that, for some of the runs, while

the average fitness is often significantly improved over generations, the improvement in maximum

fitness tends to be less great. Further investigation would be required to determine to what extent

this issue is caused by the artificial cell’s partitioning mechanism, and to what extent by the GA.

For example, increasing the elitism proportion would, at the very least, reduce the decreases in

maximum fitness that sometimes occur from one generation to the next.

3.2 Other further work

In addition to the suggestions in Subsection 3.1 above, other natural next steps would be to try

modelling more complex cells with more advanced spindles, eventually building up to cells on

the complexity level of mammalian cells, as well as experimenting with more complex artificial

mechanisms for DNA partitioning. It would certainly be possible to take small steps that build

on this project: for example, the addition of rescuer proteins that stop MTs from shrinking was

considered, but time constraints meant that this was not properly investigated. In order to accurately

model the mitotic spindle in a human cell, for example, more modifications to Cytosim would have

to be made, resulting in a more accurate, and hopefully more useful, simulation tool.

21

4 Methods

4.1 Cytosim

4.1.1 Background

Cytosim1 is a software suite designed for simulating cytoskeletal dynamics. It is capable of mod-

elling large systems of flexible filaments and associated proteins using a combination of mechanical

and stochastic calculations. The Cytosim project was initiated in 1995 by François Nédélec, who

is also the current principal maintainer, and it is currently being developed by the Nédélec group at

the Sainsbury Laboratory, Cambridge University. The software is run by first compiling the C++

code and then inputting a .cym configuration file, which specifies the properties of the system and

its components, including

• the time length and time step of the simulation;

• spaces, which represent cells;

• objects such as fibers, which are linear strings of points, and beads, spheres and solids,

which can represent DNA and other molecules;

• hands, which can represent proteins (or parts of proteins) with various functions and must

be placed in a single or couple object;

• any events that occur;

• what outputs to print.

Key executable files that can be compiled from the Cytosim code include sim, which runs simu-

lations, and play, which produces graphics for a simulation either live or using data from a sim

run.
1https://cytosim.org/

22

4.1. CYTOSIM SECTION 4. METHODS

4.1.2 Main assumptions and techniques

Cytosim makes a number of simplifying assumptions for more efficient simulation (Nedelec and

Foethke, 2007). Fundamentally, it uses a fixed time step, agent-based simulation method. At each

time point, each component of the simulation (including events and objects) has its step function

calledwhich determines its state for the next period of time. Points are taken to be zero-dimensional,

and fibers are one-dimensional sequences of points. As is appropriate for the movements in the

cytoplasm, the system is assumed to be at low Reynolds number, meaning inertia is neglected in all

calculations. The boundary of the cell is taken to be frictionless, so that the force on any object from

the boundary acts perpendicularly to the boundary, and the forces from the boundary are assumed

to be linear (Belmonte et al., 2017, Appendix).

Each point-like object experiences Brownian dynamics described by an overdamped Langevin

equation, ξ
dx
dt

= f(x, t)+B(t), where x is the position vector of the object, ξ is a drag coefficient,

f(x, t) accounts for the deterministic forces andB(t) represents a random fluctuation. Multi-point

objects such as fibers are modelled using points that represent discrete segments. Molecular links

are assumed to be Hookean. For objects attached to fibers, detachment rates are determined us-

ing Bell’s law (as outlined in Subsection 1.2), and the speed v of an attached motor under a load

is related to its unloaded speed v0 (as specified in the configuration file) by v = v0(1 − f∥/fm),

where f∥ is the force parallel to the fiber and fm is the specified stall force. Catastrophes for a

dynamic fiber are modelled using a rate kcat which is related to a specified GTP hydrolysis rate,

khyd, by kcat = 3k2
hyd/kgro, where kgro is the growth rate of the fiber in (no. of monomer units) s−1.

Stochastic events that depend on rates or probabilities are simulated by Gillespie or modified Gille-

spie approaches.

To solve the Langevin equations at each time step, Cytosim uses implicit integration, which

has a 1000-fold efficiency improvement over explicit numerical integration.

4.1.3 Modifications

In order to run the simulations in Subsection 2.2 onwards, various additions were made to the base

Cytosim code. A cash variable was added which stores the total amount of energy, in units of

molecules of ATP/GTP, available to the cell, and an new property called income was added to

23

4.1. CYTOSIM SECTION 4. METHODS

Action Name of property Events that require this action

Synthesis of a single or
complex synthesis_cost Any attempt to add a single or

complex to the cell

Movement of a hand which is
attached to a fiber by one step

movement_cost
(per µm)

Any attempt by an attached hand
(of a single or complex) to

move along a fiber

Polymerisation of a fiber unit_energy_cost
(per µm)

Any attempt to increase the length
of a fiber, either ‘naturally’ or
with assistance from a nucleator

Table 4.1.1: The three energy-costing actions that are accounted for in the simulations in Subsec-
tion 2.2 onwards. As with all properties defined in Cytosim, the values of the new properties are
specified in the .cym configuration file, which makes the simulations highly customisable.

represent the amount of energy gained by the cell per second. It is assumed that, for the simple

artificial cell, there are three actions that require a significant amount of energy. These are detailed

in Table 4.1.1 together with the names of the new properties that represent the energy costs involved.

For each energy-costing event, the wealth of the cell is checked and the event occurs if and only if

the cost of the event is not greater than the cash.

In addition to the above, for the simulations in Subsection 2.3, extra lines of code were added

to the main step function, which is called at each time point, that check whether (a) the two DNA

beads are on opposite sides of the cell (i.e. their x-coordinates have opposite signs) and (b) the

absolute values of their x-coordinates are both greater than a certain threshold (hard-coded as 0.5).

If both conditions are true, then theDNA is considered to be successfully partitioned, so the program

prints the time taken to partition and then restarts the simulation (unless there have been enough

replicates). Otherwise, the simulation runs for the specified time length as before.

Code snippets for some of these additions can be found in Appendix A.

24

4.2. GENETIC ALGORITHM SECTION 4. METHODS

4.2 Genetic algorithm

4.2.1 Background

A genetic algorithm (GA) was extensively used in this project as the optimisation method for

finding parameters that enable the highest success rate for completing a cellular task. This tech-

nique is inspired by the process of evolution by natural selection and draws many parallels with

it, hence the process by which it works is known as artificial evolution (Mitchell, 1998; Rupp

and Nédélec, 2012). Given a starting population A0 consisting of sets of randomly generated pa-

rameters (within specified bounds) and a fitness function f , GAs aim to produce fitter successive

generationsAi, i ≥ 1. The GA used in this project encodes the values of the parameters as follows:

for any individual xj ∈ A0, the value of each parameter p is encoded as a bit string (a gene) whose

length is specified. Given specified bounds on p, the value of p is calculated from the bit string via

a linear scale. The bit strings for all the different parameters are then concatenated into a genome

for convenience.

The steps of the GA are detailed in Figure 4.2.1. The intention of the elitism and crossover

operations is to create a fitter generation by retaining some of the attributes of the fittest individuals

in the current population but also allowing the mixing of genes (or parts of genes) to try to form

individuals with the ‘best of both worlds’. The mutation operation aims to prevent the GA from

converging to a local maximum by introducing perturbations and thus increasing diversity at each

bit position. A more rigorous mathematical justification for the validity of GAs, including the

Schema Theorem, can be found in Chapter 1 of Mitchell (1998).

4.2.2 Implementation

The GA used in this project is written in Python and was originally developed by Maud Formanek

and François Nédélec. The author of this report helped to fix bugs and refine the code, as well as

writing the code for the fitness functions relevant to this project. The code for the fitness functions

can be found in Appendix A.

25

4.2. GENETIC ALGORITHM SECTION 4. METHODS

1. Start with a population A0 consisting of individuals xj , where the parameter values for
each xj are encoded in a randomly generated genome.

2. Given the current population Ai, form the offspring population Ai+1 by calculating the
fitness f(xj) of each xj ∈ Ai and then performing the following operations in order:

(a) Elitism: choose an integer 0 < S < |Ai|, where |Ai| is the population size, and
select the fittest S individuals of Ai to be copied into Ai+1.

(b) Crossover: choose an integer 0 < P < |Ai| − S. Select 2P individuals, called
parents, from Ai with replacement using fitness rank selection, i.e. the probability
of an individual being selected scales linearly as its rank. Now recursively choose
two different parents from the selection and form a child by taking the first k bits
from the first parent and the remaining bits from the second parent. Add all these
children to Ai+1.

(c) Mutation: choose an integer 0 < Q < |Ai| − S − P . Select Q individuals from Ai

with replacement using fitness rank selection. For each of these individuals, mutate
each bit with a specified probability and add the resulting individual to Ai+1.

(d) If at this point |Ai+1| < |Ai|, complete the new population with random genomes
like for A0.

3. Repeat Step 2 until one of the following conditions is satisfied:

• the increase in maximum fitness from Ai to Ai+1 is below a specified threshold;
• the maximum fitness of an individual in Ai+1 is above a specified threshold;
• i+ 1 reaches a specified upper bound.

Fig. 4.2.1: The steps of the GA used in this project. The first stopping condition in Step 3 was in
fact disabled in all the simulations by setting the threshold to 0.

26

REFERENCES

B. Alberts. Molecular Biology of the Cell. Garland Science, Taylor and Francis Group, 2015. ISBN

9780815345244. URL https://books.google.co.uk/books?id=tLSuoQEACAAJ.

Hector Aldaz, LukeMRice, Tim Stearns, and David A Agard. Insights into microtubule nucleation

from the crystal structure of human γ-tubulin. Nature, 435(7041):523–527, 2005.

Julio M Belmonte, Maria Leptin, and François Nédélec. A theory that predicts behaviors of disor-

dered cytoskeletal networks. Molecular systems biology, 13(9):941, 2017.

Christopher S Campbell and R Dyche Mullins. In vivo visualization of type ii plasmid segregation:

bacterial actin filaments pushing plasmids. The Journal of cell biology, 179(5):1059–1066, 2007.

Alessandro De Simone, François Nédélec, and Pierre Gönczy. Dynein transmits polarized ac-

tomyosin cortical flows to promote centrosome separation. Cell Reports, 14(9):2250–2262,

2016. ISSN 2211-1247. doi: https://doi.org/10.1016/j.celrep.2016.01.077. URL https:

//www.sciencedirect.com/science/article/pii/S2211124716300936.

Marileen Dogterom and Bernard Yurke. Measurement of the force-velocity relation for growing

microtubules. Science, 278(5339):856–860, 1997. doi: 10.1126/science.278.5339.856. URL

https://www.science.org/doi/abs/10.1126/science.278.5339.856.

Colby P. Fees and Jeffrey K. Moore. A unified model for microtubule rescue. Molecular Biology

of the Cell, 30(6):753–765, 2019. doi: 10.1091/mbc.E18-08-0541. URL https://doi.org/

10.1091/mbc.E18-08-0541. PMID: 30672721.

Matthew J Footer, Jacob WJ Kerssemakers, Julie A Theriot, and Marileen Dogterom. Direct mea-

27

REFERENCES REFERENCES

surement of force generation by actin filament polymerization using an optical trap. Proceedings

of the National Academy of Sciences, 104(7):2181–2186, 2007.

Niels Galjart. Plus-end-tracking proteins and their interactions at microtubule ends. Current Biol-

ogy, 20(12):R528–R537, 2010.

Ethan C Garner, Christopher S Campbell, and R Dyche Mullins. Dynamic instability in a dna-

segregating prokaryotic actin homolog. Science, 306(5698):1021–1025, 2004.

F Gittes, B Mickey, J Nettleton, and J Howard. Flexural rigidity of microtubules and actin fila-

ments measured from thermal fluctuations in shape. Journal of Cell Biology, 120(4):923–934,

02 1993. ISSN 0021-9525. doi: 10.1083/jcb.120.4.923. URL https://doi.org/10.1083/

jcb.120.4.923.

Leland H Hartwell, Joseph Culotti, John R Pringle, and Brian J Reid. Genetic control of the cell

division cycle in yeast: A model to account for the order of cell cycle events is deduced from

the phenotypes of yeast mutants. Science, 183(4120):46–51, 1974.

T E Holy and S Leibler. Dynamic instability of microtubules as an efficient way to search in space.

Proceedings of the National Academy of Sciences, 91(12):5682–5685, 1994. doi: 10.1073/

pnas.91.12.5682. URL https://www.pnas.org/doi/abs/10.1073/pnas.91.12.5682.

Hirokazu Hotani and Tetsuya Horio. Dynamics of microtubules visualized by darkfield mi-

croscopy: treadmilling and dynamic instability. Cell motility and the cytoskeleton, 10(1-2):

229–236, 1988.

J Howard, AJ Hudspeth, and RD Vale. Movement of microtubules by single kinesin molecules.

Nature, 342(6246):154–158, 1989.

Jacob WJ Kerssemakers, E Laura Munteanu, Liedewij Laan, Tim L Noetzel, Marcel E Janson, and

Marileen Dogterom. Assembly dynamics of microtubules at molecular resolution. Nature, 442

(7103):709–712, 2006.

Masahide Kikkawa. Big steps toward understanding dynein. Journal of Cell Biology, 202(1):

15–23, 2013.

28

REFERENCES REFERENCES

Chapin Korosec and Nancy Forde. Engineering nanoscale biological molecular motors. Physics in

Canada, 73:78–81, 04 2017.

Akihisa Matsuyama, Ritsuko Arai, Yoko Yashiroda, Atsuko Shirai, Ayako Kamata, Shigeko

Sekido, Yumiko Kobayashi, Atsushi Hashimoto, Makiko Hamamoto, Yasushi Hiraoka, et al.

Orfeome cloning and global analysis of protein localization in the fission yeast schizosaccha-

romyces pombe. Nature biotechnology, 24(7):841–847, 2006.

M.Mitchell. An Introduction to Genetic Algorithms. Complex Adaptive Systems.MIT Press, 1998.

ISBN 9780262631853. URL https://books.google.co.uk/books?id=gjoiEAAAQBAJ.

D.O. Morgan. The Cell Cycle: Principles of Control. Primers in biology. New Science Press, 2007.

ISBN 9780878935086. URL https://books.google.co.uk/books?id=_7ygQAOK1DUC.

Francois Nedelec and Dietrich Foethke. Collective langevin dynamics of flexible cytoskeletal

fibers. New Journal of Physics, 9(11):427, 2007.

Raja Paul, Roy Wollman, William T. Silkworth, Isaac K. Nardi, Daniela Cimini, and Alex

Mogilner. Computer simulations predict that chromosome movements and rotations acceler-

ate mitotic spindle assembly without compromising accuracy. Proceedings of the National

Academy of Sciences, 106(37):15708–15713, 2009. doi: 10.1073/pnas.0908261106. URL

https://www.pnas.org/doi/abs/10.1073/pnas.0908261106.

Julien Pernier, Shashank Shekhar, Antoine Jegou, Bérengère Guichard, and Marie-France Carlier.

Profilin interaction with actin filament barbed end controls dynamic instability, capping, branch-

ing, and motility. Developmental cell, 36(2):201–214, 2016.

Beat Rupp and François Nédélec. Patterns of molecular motors that guide and sort filaments. Lab

on a chip, 12(22):4903–4910, 2012.

Jeanne Salje and Jan Löwe. Bacterial actin: architecture of the parmrc plasmid dna partitioning

complex. The EMBO Journal, 27(16):2230–2238, 2008.

Virginie Stoppin, Marylin Vantard, Anne-Catherine Schmit, and Anne-Marie Lambert. Isolated

plant nuclei nucleatemicrotubule assembly: The nuclear surface in higher plants has centrosome-

like activity. The Plant Cell, 6(8):1099–1106, 1994.

29

REFERENCES REFERENCES

Ronald D Vale and Ronald AMilligan. The way things move: looking under the hood of molecular

motor proteins. Science, 288(5463):88–95, 2000.

Kristen J Verhey, Donna L Lizotte, Tatiana Abramson, Linda Barenboim, Bruce J Schnapp, and

Tom A Rapoport. Light chain–dependent regulation of kinesin’s interaction with microtubules.

The Journal of cell biology, 143(4):1053–1066, 1998.

Kristen J Verhey, Neha Kaul, and Virupakshi Soppina. Kinesin assembly and movement in cells.

Annual review of biophysics, 40:267–288, 2011.

Sam Walcott. The load dependence of rate constants. The Journal of chemical physics, 128(21):

06B601, 2008.

Claire E Walczak, Shang Cai, and Alexey Khodjakov. Mechanisms of chromosome behaviour

during mitosis. Nature reviews Molecular cell biology, 11(2):91–102, 2010.

30

A Code Snippets

A.1 Modifications to Cytosim

Below are some of the significant blocks of code added to Cytosim.

Additional energy constraints

simul.cc

33
...

34 /// The amount of energy the cell has, in units of ATP equivalent

35 real cash;

36

37 /// Checks if the cell has enough 'cash' to perform the action

38 /// - if so, it returns true and subtracts the passed amount

39 bool checkWealth(real cost)

40 {

41 if (cash >= cost)

42 {

43 cash -= cost;

44 return true;

45 }

46 else

47 {

48 return false;

49 }

50 }

51
...

31

A.1. MODIFICATIONS TO CYTOSIM APPENDIX A. CODE SNIPPETS

couple_set.cc

248
...

249 void CoupleSet::newObjects(ObjectList& res, const std::string& name, Glossary&

opt)

250 {

251 CoupleProp * p = simul_.findProperty <CoupleProp >("couple", name);

252 Couple * obj = p->newCouple(&opt);

253

254 if ((p->synthesis_cost > 0) && !checkWealth(p->synthesis_cost))

255 {

256 return;

257 }

258
...

fiber_site.h

110
...

111 /// move to a different abscissa on the current fiber

112 void moveTo(real a)

113 {

114 hAbs = a;

115 reinterpolate();

116 }

117

118 /// moveTo but taking into account energy cost

119 void moveTo(real a, real movement_cost)

120 {

121 if ((a * movement_cost > 0) && !checkWealth(a * movement_cost))

122 {

123 return;

124 }

125

126 moveTo(a);

32

A.1. MODIFICATIONS TO CYTOSIM APPENDIX A. CODE SNIPPETS

127 }

128
...

nucleator.cc

24
...

25 void Nucleator::makeFiber(ObjectList& objs, Simul& sim, Vector pos, std::

string const& fiber_type , Glossary& opt)

26 {

27 ObjectMark mk = 0;

28 Rotation rot(0, 1);

29

30 Fiber * fib = sim.fibers.newFiber(objs, fiber_type , opt);

31 Hand const* h = hMonitor ->otherHand(this);

32

33 real cost = fib->length() * fib->prop->unit_energy_cost;

34

35 if ((cost > 0) && !checkWealth(cost))

36 {

37 objs.destroy();

38 return;

39 }

40
...

fiber.cc

163
...

164 else if (inc > 0)

165 {

166 real cost = inc * prop->unit_energy_cost;

167

168 if ((prop->unit_energy_cost > 0) && !checkWealth(cost))

33

A.1. MODIFICATIONS TO CYTOSIM APPENDIX A. CODE SNIPPETS

169 {

170 return;

171 }

172
...

Partitioning checkpoint

simul_step.cc

108
...

109 void Simul::step()

110 {

111 #if SPATIAL

112 // See if the beads have separated enough - if so, end the simulation

113 Bead* dna1 = beads.first();

114 Bead* dna2 = dna1->next();

115 real dna1_x = dna1->position().x();

116 real dna2_x = dna2->position().x();

117

118 if ((dna1_x * dna2_x < 0)

119 && std::fabs(dna1_x) > 0.5

120 && std::fabs(dna2_x) > 0.5)

121 {

122 printf("%% dna1_x: %f\tdna2_x: %f\n", dna1_x, dna2_x);

123 printf("%% time %f\n", prop.time);

124 abortRun = 1;

125 }

126 #endif

127
...

34

A.2. FITNESS FUNCTIONS APPENDIX A. CODE SNIPPETS

A.2 Fitness functions

arena.py

1 try:

2 import os

3 import sys

4 import re

5 import numpy as np

6 from typing import List

7 except ImportError as e:

8 sys.stderr.write("Error loading module: %s\n" % str(e))

9 sys.exit()

10

11 spatial = False # set to True if including partitioning checkpoint

12

13 # simulation executable must be in current working directory:

14 simex = os.path.abspath('sim_spatial') if spatial else os.path.abspath('sim')

15 template = 'config.cym.tpl'

16 genetic_config = 'genetics.config'

17 max_time = 100 # units: s

18

19

20 def update_max_time():

21 global max_time

22

23 with open(template) as f:

24 for line in f:

25 if line.strip().startswith('time_step'):

26 time_step = float(line.split()[2])

27 elif line.strip().startswith('run'):

28 max_time = float(line.split()[1]) * time_step

29 break

30

31

32 def calculate_fitness(data: List[str], target):

35

A.2. FITNESS FUNCTIONS APPENDIX A. CODE SNIPPETS

33 """

34 Calculate fitness expressing how close `data` is to `target`

35 Higher fitness is better

36 """

37 data = data[0].split('\n')

38

39 part_scores = []

40

41 if spatial:

42 for i, line in enumerate(data):

43 if line.startswith('% report'):

44 # Figure out if the partitioning was successful

45 if i >= 2 and data[i-2].startswith('% time'):

46 # Partitioning successful

47 t = float(data[i-2].split()[2])

48 score_this_time = 1 - t/max_time

49 # Account for floating point errors

50 score_this_time = np.round(score_this_time , decimals=5)

51 else:

52 # Partitioning unsuccessful

53 score_this_time = 0

54

55 part_scores.append(score_this_time)

56 else:

57 # Remove empty lines

58 data_copy = data.copy()

59 for line in data:

60 if not line:

61 data_copy.remove(line)

62 data = data_copy

63

64 for i in range(2, len(data), 4):

65 dna1 = data[i]

66 dna2 = data[i+1]

67 dna1_x = float(dna1.split()[2])

68 dna2_x = float(dna2.split()[2])

36

A.3. HEATMAPS AND FITNESS PLOTS APPENDIX A. CODE SNIPPETS

69

70 score_this_time = (-1 * np.sign(dna1_x) * np.sign(dna2_x) + 1) / 2

71 # Account for floating point errors

72 score_this_time = np.round(score_this_time , decimals=5)

73 part_scores.append(score_this_time)

74

75 part_score = np.round(np.mean(part_scores), decimals=5)

76 return part_score

A.3 Heatmaps and fitness plots

make_fitness_plot.py

1 #!/usr/bin/env python

2 # M. Yin 2022

3

4 """

5 Reads the run data from a specified directory and generates a heatmap

6 based on the distribution of fitness scores for each generation of the run.

7

8 Syntax:

9

10 make_fitness_plot.py [directory containing run data]

11

12 For correct naming and labelling , do not end the directory path with a

'/'.

13

14 Example:

15

16 make_fitness_plot.py run0

17 """

18

19 import os

20 import sys

37

A.3. HEATMAPS AND FITNESS PLOTS APPENDIX A. CODE SNIPPETS

21 import matplotlib.pyplot as plt

22 import numpy as np

23

24

25 spatial = True

26

27

28 # Function for generating heatmap

29 def heatmap(data, row_labels , col_labels , ax=None,

30 cbar_kw={}, cbarlabel="", **kwargs):

31 """

32 Create a heatmap from a numpy array and two lists of labels.

33

34 Parameters

35 ----------

36 data

37 A 2D numpy array of shape (M, N).

38 row_labels

39 A list or array of length M with the labels for the rows.

40 col_labels

41 A list or array of length N with the labels for the columns.

42 ax

43 A `matplotlib.axes.Axes` instance to which the heatmap is plotted. If

44 not provided , use current axes or create a new one. Optional.

45 cbar_kw

46 A dictionary with arguments to `matplotlib.Figure.colorbar `. Optional

.

47 cbarlabel

48 The label for the colorbar. Optional.

49 **kwargs

50 All other arguments are forwarded to `imshow `.

51 """

52

53 if not ax:

54 ax = plt.gca()

55

38

A.3. HEATMAPS AND FITNESS PLOTS APPENDIX A. CODE SNIPPETS

56 # Plot the heatmap

57 im = ax.imshow(data, **kwargs)

58

59 # Create colorbar

60 cbar = ax.figure.colorbar(im, ax=ax, **cbar_kw)

61 cbar.ax.set_ylabel(cbarlabel , rotation=-90, va="bottom")

62

63 # Show all ticks and label them with the respective list entries.

64 ax.set_xticks(np.arange(data.shape[1]), labels=col_labels)

65 ax.set_yticks(np.arange(data.shape[0]), labels=row_labels)

66

67 # Let the horizontal axes labeling appear on top.

68 ax.tick_params(top=False, bottom=True,

69 labeltop=False, labelbottom=True)

70

71 # Rotate the tick labels and set their alignment.

72 plt.setp(ax.get_xticklabels(), rotation=45, rotation_mode="anchor",

73 size=7)

74

75 # Turn spines off and create white grid.

76 ax.spines[:].set_visible(False)

77

78 ax.set_xticks(np.arange(data.shape[1]+1)-.5, minor=True)

79 ax.set_yticks(np.arange(data.shape[0]+1)-.5, minor=True)

80 ax.tick_params(which="minor", bottom=False, left=False)

81

82 return im, cbar

83

84

85 def main(dir: str):

86 """

87 Generates a heatmap based on the distribution of fitness scores for each

88 generation of the run

89

90 Args:

91 dir (str): the directory where all the run data is saved

39

A.3. HEATMAPS AND FITNESS PLOTS APPENDIX A. CODE SNIPPETS

92 """

93

94 if not dir:

95 dir = os.getcwd()

96 elif dir.endswith('/'):

97 dir = dir[:-1]

98 dir = os.path.abspath(dir)

99

100 # Get required parameters from evolve.config

101 pam = {}

102 with open(dir + '/evolve.config', 'r') as f:

103 for s in f:

104 # Remove commented out lines

105 if not s.startswith('%'):

106 exec(s, {}, pam)

107 pop_size = pam.pop('population_size')

108 gen_max = pam.pop('generation_max')

109 config_file = pam.pop('config_file')

110

111 # The number of times each simulation is run, as specified by the last

112 # line in the config.cym.tpl file

113 # e.g. 'restart 9' --> num_reps = 10

114 with open(dir + '/' + config_file , 'r') as f:

115 for line in f:

116 if line.startswith('restart'):

117 num_reps = int(line.split()[1]) + 1

118 break

119

120 # Extract all the data we need

121

122 x = [] # The generation numbers

123 y = [] # The fitness scores

124 averages = [] # Average fitness for each generation

125 max_fitnesses = [] # Maximum fitness for each generation

126

127 for gen in range(gen_max):

40

A.3. HEATMAPS AND FITNESS PLOTS APPENDIX A. CODE SNIPPETS

128 try:

129 with open(f'{dir}/gen{gen:04}/generation.txt') as file:

130 scores_for_gen = []

131

132 for l in file:

133 if l == '':

134 break

135 # Add fitness score to list

136 score = float(l.split()[1])

137 y.append(score)

138 scores_for_gen.append(score)

139 except FileNotFoundError:

140 print(f'Found {gen} gen* directories')

141 gen_max = gen

142 break

143

144 averages.append(np.round(np.mean(scores_for_gen), decimals=5))

145 max_fitnesses.append(np.round(max(scores_for_gen), decimals=5))

146 x += [gen] * pop_size

147

148 averages = np.array(averages)

149 max_fitnesses = np.array(max_fitnesses)

150

151 fig = plt.figure(figsize=(13, 5))

152 ax = fig.subplots()

153

154 # Count the number of occurrences of each fitness score

155 num_rows = 21 if spatial else (num_reps + 1)

156 upper = 0.02 if spatial else 1

157

158 counts = np.zeros((num_rows , gen_max))

159 fitness_scores = np.round(np.linspace(0, upper, num_rows), decimals=5)

160 for gen in range(gen_max):

161 gen_counts , _ = np.histogram(y[gen*pop_size:(gen+1)*pop_size],

162 fitness_scores)

163 for i, cnt in enumerate(gen_counts):

41

A.3. HEATMAPS AND FITNESS PLOTS APPENDIX A. CODE SNIPPETS

164 counts[-(i+1), gen] = cnt

165 fitness_scores = fitness_scores[::-1]

166

167 ax.set_title(f'Heatmap of generational fitnesses for '

168 f'{os.path.basename(dir)}\n')

169 heatmap(counts, fitness_scores , range(gen_max), ax,

170 cbarlabel='Count', cmap='viridis')

171 ax.set_xlabel('Generation')

172 ax.set_ylabel('Fitness')

173

174 # Draw average line

175 ax.plot(range(gen_max), (upper - averages) * (num_rows - 1), 'w-')

176 # Draw max fitness line

177 ax.plot(range(gen_max), (upper - max_fitnesses) * (num_rows - 1), 'r-')

178

179 os.chdir(dir)

180 filename = f'{os.path.basename(dir)}_heatmap.png'

181 plt.savefig(filename)

182 print(f'Image saved as {filename}')

183

184

185 if __name__ == '__main__':

186 if len(sys.argv) > 1 and sys.argv[1].endswith('help'):

187 print(__doc__)

188 else:

189 main(sys.argv[1])

42

B Configuration Files

The following files were used for the GA runs in Subsection 2.2 with the first evolutionary config-

uration. The other configuration files were similar.

Cell template file

config.cym.tpl

1 % Simulating partitioning

2

3 set simul system

4 {

5 time_step = 0.001

6 viscosity = 0.1

7 display = (label=(Partitioning simulation); size=1200, 700)

8 income = 800000

9 }

10

11 set space cell

12 {

13 shape = capsule

14 }

15

16 new cell

17 {

18 radius = 0.4

19 length = 2

20 }

21

22 %%% Microtubules

23 set fiber microtubule

24 {

25 rigidity = 20

26 segmentation = 0.2

43

APPENDIX B. CONFIGURATION FILES

27 confine = inside, 100

28 unit_energy_cost = 1625 % 13/0.008

29

30 activity = dynamic

31 unit_length = 0.008

32 growing_speed = [[growing_speed]]

33 shrinking_speed = -0.5

34 hydrolysis_rate = 1.0 % catastrophe_rate approximately 1/8.3 s^-1

35 growing_force = 1.7

36 total_polymer = 200

37 }

38

39 %%% Motors

40 set hand kinesin

41 {

42 binding_rate = 10

43 binding_range = [[binding_range]]

44 unbinding_rate = 0.3

45 unbinding_force = 2.5

46

47 activity = move

48 unloaded_speed = 0.02 % mitotic kinesin very slow

49 stall_force = 6

50 movement_cost = 125 % 1/0.008

51

52 display = (color=red, red;)

53 }

54

55 set couple complex

56 {

57 hand1 = kinesin

58 hand2 = kinesin

59 stiffness = 100

60 diffusion = 0.05

61 specificity = antiparallel

62 length = 0.025

44

APPENDIX B. CONFIGURATION FILES

63 fast_diffusion = 0

64 synthesis_cost = 400

65 }

66

67 %%% DNA (plasmids)

68 set bead dna

69 {

70 confine = inside, 100

71 display = (color=green;)

72 }

73

74 %%% Nucleator

75 set hand nucleator

76 {

77 unbinding = 0, inf % rate, force

78 activity = nucleate

79 nucleate = 1, microtubule , (length=0.01; plus_end=grow;)

80 % rate, name of filament , new microtubule

81 display = (color=gray;)

82 }

83

84 set single grower

85 {

86 hand = nucleator

87 stiffness = 1000

88 }

89

90 %%% Create objects

91 new dna

92 {

93 radius = 0.1

94 attach = [[int(growers_per_dna)]] grower

95 position = -0.5 0 0

96 }

97

98 new dna

45

APPENDIX B. CONFIGURATION FILES

99 {

100 radius = 0.1

101 attach = [[int(growers_per_dna)]] grower

102 position = -0.3 0 0

103 }

104

105 new event

106 {

107 activity = (new 1 complex)

108 rate = [[motor_syn_rate]]

109 }

110

111 run 100000 system

112 {

113 nb_frames = 4

114 }

115

116 report dna:position *

117 restart 39

Evolutionary configuration

evolve.config

1 config_file = "config.cym.tpl" # name of the config template file

2 population_size = 50 # size of the population

3 njobs = 32 # number of processes

4 FIT_DIFF_MAX = 0 # convergence criteria on fitness difference

between two successive generations

5 FIT_MAX = 0.9 # convergence on absolute fitness value

6 elitism = 0.1 # fraction of population that continues to new

generation

7 crossover = 0.7 # fraction of population that is created from

mating of two parents

46

APPENDIX B. CONFIGURATION FILES

8 mutation = 0.2 # fraction of population that is created from

mutation of parents

9 mutation_rate = 0.04 # rate of change per bit of genome

10 n_plus = 1.3 # for rank selection , expected number of

offspring for best individual

11 resurrect = 1 # reuse data from old generation when one

genome reappears

12 generation_max = 50 # max number of generations to be calculated

Parameter ranges

genetics.config

1 growing_speed = ([0.05, 0.5], 8)

2 binding_range = ([0.01, 0.05], 4)

3 growers_per_dna = ([1, 12], 4)

4 motor_syn_rate = ([10, 100], 6)

47

